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Quantum annealing in a Kinetically constrained system
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Classical and quantum annealing is discussed in the case of a generalized kinetically constrained model,
where the relaxation dynamics of a system with trivial ground state is retarded by the appearance of energy
barriers in the relaxation path, following a local kinetic rule. Effectiveness of thermal and quantum fluctuations
in overcoming these kinetic barriers to reach the ground state are studied. It has been shown that for certain
barrier characteristics, quantum annealing might by far surpass its thermal counter part in reaching the ground

state faster.
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I. INTRODUCTION

Here we demonstrate the effectiveness of quantum an-
nealing [1] in the context of a certain generalized kinetically
constrained systems (KCS) [2]. KCS’s are simple model sys-
tems having trivial ground state structures and static proper-
ties, but a complex relaxation behavior due to some explicit
constraints introduced in the dynamics of the system [2].
These systems are very important in understanding how
much of the slow and complex relaxation behavior of a glass
can be attributed to its constrained dynamics alone, leaving
aside any complexity of its energy landscape structure. In
KCS’s one can view the constraints to be represented by
infinitely high energy barriers appearing dynamically. To
study annealing, we generalize such models by allowing the
height of such kinetically occurring barriers to be finite but
large.

It has been demonstrated in certain models with energy
barriers [1,3] that one can effectively appoint quantum fluc-
tuations (instead of thermal ones) to anneal a glassy system
toward its ground state. In the method of quantum annealing,
one introduces quantum fluctuations by including a term in
the Hamiltonian due to tunneling field, that does not com-
mute with the original (classical) Hamiltonian, and thus gen-
erate transition probabilities between the eigenstates (classi-
cal configurations) of the original (classical) Hamiltonian.
The introduction of such a quantum tunneling is supposed to
make the energy barriers in the landscape transparent to the
system. This allows transitions between different configura-
tions classically trapped between even infinite barriers, if the
barriers are narrow enough. In other words, it is expected
that application of a quantum tunneling term will make the
free energy landscape completely ergodic, i.e., the system
will consequently be able to visit any configuration with fi-
nite probability (Ray er al. [1]). Finally, of course, the quan-
tum tunneling term is to be tuned to zero to get back the
ground state of the classical Hamiltonian. In case of thermal
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annealing as well, the energy landscape is made almost er-
godic to thermal transitions at the initial stage of the anneal-
ing by starting with a high enough temperature (which is
slowly reduced to zero and the system becomes nonergodic
as the temperature falls below some glass transition point).
But it has been argued that when the barriers are very high
but narrow enough, quantum annealing would be the better
choice, since probability of quantum tunneling across a bar-
rier increases with the decrease of barrier width, while ther-
mal transition probability in such a case has no such depen-
dence on barrier width. However, quantum and thermal
fluctuations are inherently different in nature (as reflected in
the functional forms of the transition probabilities in respec-
tive cases), giving rise to nontrivial differences in their ef-
fectiveness in performing annealing. In fact, unlike the clas-
sical glasses below the glass transition point, quantum spin
glasses (transverse Ising spin glasses in particular) may re-
main ergodic even in the glass phase (for low enough tun-
neling fields [1,5]).

Here we study quantum annealing in the context of a ki-
netically constrained system, which can be represented by a
generalized version of the East model [4] (a one-dimensional
KCS). We also compare the results with that of thermal an-
nealing done in the same system. The original East model is
basically a one-dimensional chain of noninteracting classical
Ising (“up-down”) spins in a longitudinal field 4, say, in the
downward direction. The ground state of such a system is
trivially given by all spins down. A kinetic constraint is in-
troduced in the model by putting the restriction that the ith
spin cannot flip if the (i—1)-th spin is down. Such a kinetic
constraint essentially changes the topology of the configura-
tion space, since the shortest path between any two configu-
rations differing by one or more forbidden flips, is increased
in a complicated manner owing to the blockage of the
“straight” path consisting of direct flips of the dissimilar
spins. Further, the constraint becomes more limiting as more
spins turn down, as happens in the late approach to equilib-
rium. As a result, the relaxation processes have to follow
more complex and lengthier paths, giving rise to exponen-

tially large timescale (~e"’, where T is the temperature)

[4].
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FIG. 1. Potential energy wells for the spin at site i, when
(i—1)-th spin is (a) up and (b) down, with the external field 4 in the
downward direction and barrier height y very large and the width a
small. For the classical generalized East model, flipping across the
barrier in (b) is a thermal jump (at any finite 7). In the quantum
model considered here, probability for crossing the barrier in (b) is
due to quantum tunneling through it at a finite I'.

II. MODEL

Our model is a chain of asymmetric double wells (each
with infinite boundary walls), with a particle localized within
each of them. The asymmetry is due to an energy difference
of 21 between the two wells of a double well. The particle in
one of the two (asymmetric) wells can change its location to
the other well stochastically, either due to the thermal fluc-
tuation or due to quantum fluctuation present in the system.
The generalized kinetic constraint is introduced by assuming
that if the particle in the (i—1)-th double well resides in the
lower one of the two wells, then there appears a barrier of
height y and width a between the two wells of the ith double
well. In such a situation the particle in the ith double well has
to cross the barrier in order to change its location from one
well to the other [Fig. 1(b)]. On the other hand, if the particle
of the (i—1)-th is in its upper well, there is no such barrier to
cross for [Fig. 1(a)]. Following the approximate mapping
done in case of symmetric double well [5], this model can be
approximately represented by a generalized version of the
East model, where each Ising spin is in a local longitudinal
field & in the downward direction. The spin at the ith site sees
a barrier of height y and width a between its two energy
states when the (i—1)-th spin is down [Fig. 1(b)], where as
no such barrier occurs for the ith spin when the (i—1)-th spin
is up [Fig. 1(a)]. This kinetic constraint is the same in both
cases irrespective of whether the dynamics is classical or
quantum.

When dynamics of the particle is due to quantum fluctua-
tions, the tunneling probabilities come from the following
semiclassical picture of scattering of a particle in a double
well with infinitely remote outer boundaries (¢— <0 in Fig.
1). If a particle is put in one of the wells of such a double
well with some Kkinetic energy (actually the expectation
value) I', then it will eventually be scattered by the separator
(a barrier or step) between the two wells. In such a scatter-
ing, there is a finite probability P that the particle manages to
go to the other well. We calculate P from the simple picture
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of scatterings of a particle by one-dimensional potentials as
prescribed below. In the thermal case we take simple Boltz-
mann probabilities for crossing the same barriers. The mini-
mum of the energy of the Ising chain (equivalent to the po-
tential energy of the chain of the double wells) trivially
corresponds to the state with all the spins down, i.e., aligned
along the longitudinal field & (where all the particles are in
their respective lower wells). To reach the ground state in the
quantum case, we start with a very large initial value of I'
and then reduce it following an exponential schedule given
by I'=I"j exp(~t/ 7). Here t denotes the time, and 7, sets the
effective time scale of annealing. At zero temperature the
spin flip dynamics occurs only due to the tunneling (kinetic
energy) term I, and hence the system ceases to have any
relaxation dynamics in the limit I'— 0. It may be mentioned
here that in the absence of any analytical expression for the
tunneling probability in the asymmetric case of the type dis-
cussed here, (see e.g., [6]), we employ the asymmetric bar-
rier tunneling probabilities available [7]. Similarly, in the
thermal case, we start with a high initial temperature 7,, and
reduce it eventually following an exponentially decreasing
temperature schedule given by T=T,exp(—t/7.); 7¢ being
the time constant for the thermal annealing schedule. Here,
when (i—1)-th spin is down, the flipping probability for the
i-th spin [~exp—(x/T)]. Otherwise, it flips with probability
P=1 if it were in the up state, and with Boltzmann probabil-
ity P=exp(=h/T) if it were in the down state.

II1. SIMULATION AND RESULTS

We have employed the quantum transmission (flipping)
probabilities (cf. [7]) from a very elementary scattering pic-
ture which is qualitatively adequate, though not strictly valid
for the asymmetric double well [shown in Fig. 1(b)] because
the states within it are bounded by its finite width a. Follow-
ing are the flipping probabilities (P) for the ith spin in dif-
ferent possible situations used in our Monte Carlo simula-
tion:

(1) If the (i—1)-th spin is up and the ith spin is also up
then P=1.

(2) If the (i—1)-th spin is up and the ith spin is down then
(a) P=0 for I'<2h and (b) P=min{1,4[I‘(I‘—2h)]”2/(v‘f
+\I['=2h)%} for I'=2h.

(3) If the (i—1)-th spin is down and the ith spin is up then
P=min{1,4[[(T+21)]"2/[(NT+ T +2h)*+g]}.

(4) If the (i—1)-th spin is down and the ith spin is
down then (a) P=0 for I'<2h, and (b) P=min{l,4[I'(T
—2m)]"2/[(\T+\T =2h)?+g2]} for T =2 (h and T denoting
the magnitudes only).

Here g=yxa, x and a being, respectively, the height and
width of the barrier representing the kinetic constraint. The
above expressions for P are actually the transmission coeffi-
cients in respective cases of one-dimensional scattering
across asymmetric barrier or step (according to the form of
the potential encountered in passing from one well to the
other, see, e.g., [7]). Application of the above scattering pic-
ture, even for the double wells in Fig. 1(b) (which our simu-
lation is based on) as discussed before, is of course an ap-
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FIG. 2. Quantum annealing (7=0) for g=100, (=100, and &
=1 is shown for different values of 7y, for a chain of 5X 10* spins
(m averaged over the same set of ten initial configurations for each
7p). The horizontal (dashed) line indicates the average (over the
same set C) value of m that could be reached from the initial con-
figurations by simply minimizing the energy following the downhill
principle (a single step is enough to get there). In the inset, variation
of In[(7y)pin] with In[g] is shown (by the points) for one given
configuration. The error in (7p)y, is typically less than 0.5% in
each case. The continuous line in the inset shows a fit of the data by
the continuous line (7p)yin~g"; k= 1.67 (obtained by linear least-
square fitting).

proximation. It may be noted that our flipping probabilities
used here do not satisfy the condition of detailed balance,
though the evolution matrix has got the required stochastic
structure (see Sec. IV for details).

In our simulation, we take N Ising spins (o;=%1, i
=1,...,N) on a linear chain with periodic boundary condi-
tion. The initial spin configuration is taken to be random
such that magnetization m=(1/N)2,;0; is practically negli-
gible (m;=~0). We then start with a tunneling field I'; and
follow the zero temperature (semiclassical) Monte Carlo
scheme as mentioned above, using the spin flip probabilities
P’s appropriate for the four cases (1)—(4). Each complete run
over the entire lattice is taken as one time unit, and as time
progresses, I is decreased from its initial value I'j according
to I'=T'ye~""0. The results are shown in Fig. 2. It shows that
for N=50 000, g=100 and I'j=100 the system freezes before
reaching the ground state (m;=1) for low values of 7,; say
for 7,=2000. For a somewhat greater value, e.g., 7,=5000,
the system is completely annealed to the ground state within
about 4 X 10* time steps. However, for a much greater 70
like 7,=20 000, the system of course anneals completely but
consumes more time unnecessarily. These generic features
remain the same for other higher values of g. We have also
studied the dependence of annealing behavior with the pa-
rameter g, which is actually a measure of how impenetrable
is the infinite barrier representing the kinetic constraint.
Computations were carried out to locate, for a given value of
g, the minimum value of 7, for which the system just an-
neals up to m;=0.8 (complete annealing requires prohibi-
tively longer computer time for this comparative study).

We call this minimum value (7). A bisection scheme
was used to locate (7)., for different values of g starting
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FIG. 3. Comparison between classical and quantum annealing
for a chain of 5 X 10* spins (for the same initial disordered configu-
ration with m;~107%). We show the results for 7,=1.8X10* (for
quantum) and 7-=10° (for classical) with h=1; a lower 7. would
not produce substantial annealing. Starting from the same initial
values I')=T,=100, (and g=100 in the quantum case) we observe
that classical annealing requires about 107 steps, whereas quantum
annealing takes about 10* steps for achieving the same final order
m~0.92.

for the same initial configuration. The inset in Fig. 2 shows
that (7p), increases fairly sharply with g (an empirical
analysis shows (TQ)min~g1'67, for g=<1000. This variation
with g depends on the specific functional forms of P occur-
ring in the quantum case. In contrast to this, in classical case,
(7¢)min grows exponentially with the barrier height y and is
independent of the barrier width a. However, for even higher
values of g, the slope is expected to decrease, and finally in
the asymptotic limit g—oc, the relaxation behavior should
converge to that of one with an unsurpassed kinetic con-
straint (like the classical East model). This asymptotic con-
vergence could not however be explored, since the required
computational time becomes prohibitively long as g is in-
creased further.

We compare the results of thermal and quantum annealing
for the same order of initial value and time constant for I'
and T (barrier height y is taken to be 1000 in both cases
while g was taken to be 100 in the quantum annealing case,
or equivalently the barrier width a is taken to be of the order
of 0.1). We observe that to achieve a similar degree of an-
nealing (attaining a certain final magnetization m,), starting
from the same disordered configuration, one typically re-
quires much smaller 7, compared to 7¢; typically, 7o~ 103
X 7, for equivalent annealing (for similar optimal values of
final order m;~ 0.92). This comparison of course depends on
the barrier characteristics (value of g) as shown in the inset
of Fig. 2.

IV. SUMMARY AND DISCUSSION

We have discussed here the annealing of a generalized
kinetically constrained chain of N double wells with a par-
ticle in each, starting from a disordered state (with negligible
initial order), to its (external field induced) fully ordered
ground state. In our model kinetic retardations are repre-
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sented by barriers of finite height and width. We have shown
that for certain barrier characteristics, namely, very high but
thin barriers quantum annealing can be far superior to its
thermal counter part in reaching the ground state. The noise
necessary for the annealing are introduced by temperature 7'
in the thermal case and by a quantum mechanical kinetic
energy term ' in the quantum case. The introduced noise is
reduced following an exponential schedule in both cases: T
=Tye e, I'=Tye "0, with T,~T. For our simulation for
the quantum case, we have taken the tunneling probabilities
P (for cases (1)—(4)) and employed them in a semiclassical
fashion for the one-dimensional spin chain considered. We
observe that for similar achievement in final order (mf
=~0.92 starting from m;=107%), 7.~10°7, for N=5X10%
For even larger order (m,~ 1), quantum annealing works
even better (TC~103TQ, for the same value of N). These
comparisons are for g=10% and y=10? for the constraint bar-
riers.

In this picture, we considered the collective dynamics of a
many particle system, where each one is confined in a (field)
induced asymmetric double-well potential for which we con-
sidered only the low lying two states (the wave packet local-
ized in one well or the other), representing the two states (up
and down) of an Ising spin discussed above. The tunneling of
the wave packet from one well to the other was taken into
account by employing a scattering picture and we used the
tunneling probabilities as the flip probabilities for the quan-
tum Ising spins. As such, the reported simulation for the
one-dimensional quantum East model is a semiclassical one.

Here a few words regarding the absence of detailed bal-
ance in our flipping probabilities will be in order. Detailed
balance (e.g., using rates which are ratios of Boltzmann
probabilities) is indeed the simplest way of ensuring the ap-
proach of a nonequilibrium system to the simplest types of
steady state (e.g., the thermal equilibrium state’s correspond-
ing to a canonical ensemble). But the study of the approach
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of nonequilibrium systems to steady states typically (and
necessarily, in the case of nonproduct states) involves a more
general set of dynamic rules, captured, for example, by an
evolution operator involving a (typically non-Hermitian)
Hamiltonian which has the usual stochastic structure which
ensures conservation of probability, and ensures eigenvalues,
one of which is zero, having non-negative real parts. Tunnel-
ing is one among many possible processes (usually captured
by transition rates in a master equation) which can satisfy
these requirements, and is clearly more appropriate than,
e.g., Arrhenius rates in a quantum system at zero tempera-
ture.

It may be noted that, because of the absence of interspin
interaction, the dimensionality actually plays no role in this
model except for the fact that the kinetic constraints on any
spin depend only on the left nearest neighbor (directedness in
one dimension). Hence the semiclassical one-dimensional
simulation, instead of a proper quantum Monte Carlo simu-
lation (equivalent to a higher-dimensional classical one [5]),
is quite appropriate here. Additionally, even for interacting
(finite range) one-dimensional system order is always com-
pletely destroyed at any finite temperature (T=0 is the criti-
cal point). Thus it is difficult to reach the ground state effi-
ciently by employing thermal annealing in such systems in
the presence of competing interactions [5]. However, quan-
tum critical points in such systems exists at the finite value of
the tunneling (disordering) field I', and one can utilize the
order below the critical point while annealing, and reach the
ground state more efficiently.
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